Extensions 1→N→G→Q→1 with N=C4 and Q=C22xC22

Direct product G=NxQ with N=C4 and Q=C22xC22
dρLabelID
C23xC44352C2^3xC44352,188

Semidirect products G=N:Q with N=C4 and Q=C22xC22
extensionφ:Q→Aut NdρLabelID
C4:(C22xC22) = D4xC2xC22φ: C22xC22/C2xC22C2 ⊆ Aut C4176C4:(C2^2xC22)352,189

Non-split extensions G=N.Q with N=C4 and Q=C22xC22
extensionφ:Q→Aut NdρLabelID
C4.1(C22xC22) = D8xC22φ: C22xC22/C2xC22C2 ⊆ Aut C4176C4.1(C2^2xC22)352,167
C4.2(C22xC22) = SD16xC22φ: C22xC22/C2xC22C2 ⊆ Aut C4176C4.2(C2^2xC22)352,168
C4.3(C22xC22) = Q16xC22φ: C22xC22/C2xC22C2 ⊆ Aut C4352C4.3(C2^2xC22)352,169
C4.4(C22xC22) = C11xC4oD8φ: C22xC22/C2xC22C2 ⊆ Aut C41762C4.4(C2^2xC22)352,170
C4.5(C22xC22) = C11xC8:C22φ: C22xC22/C2xC22C2 ⊆ Aut C4884C4.5(C2^2xC22)352,171
C4.6(C22xC22) = C11xC8.C22φ: C22xC22/C2xC22C2 ⊆ Aut C41764C4.6(C2^2xC22)352,172
C4.7(C22xC22) = Q8xC2xC22φ: C22xC22/C2xC22C2 ⊆ Aut C4352C4.7(C2^2xC22)352,190
C4.8(C22xC22) = C4oD4xC22φ: C22xC22/C2xC22C2 ⊆ Aut C4176C4.8(C2^2xC22)352,191
C4.9(C22xC22) = C11x2+ 1+4φ: C22xC22/C2xC22C2 ⊆ Aut C4884C4.9(C2^2xC22)352,192
C4.10(C22xC22) = C11x2- 1+4φ: C22xC22/C2xC22C2 ⊆ Aut C41764C4.10(C2^2xC22)352,193
C4.11(C22xC22) = M4(2)xC22central extension (φ=1)176C4.11(C2^2xC22)352,165
C4.12(C22xC22) = C11xC8oD4central extension (φ=1)1762C4.12(C2^2xC22)352,166

׿
x
:
Z
F
o
wr
Q
<